50 research outputs found

    Quantum optics with bosons and fermions

    Full text link
    Atom optics, a field which takes much inspiration from traditional optics, has advanced to the point that some of the fundamental experiments of quantum optics, involving photon correlations, have found atomic analogs. We discuss some recent experiments on atom bunching and anti-bunching as well as some prospects for extending them to the field of many body physics.Comment: English version of "Optique atomique quantique : apr\`es les bosons, les fermions

    Atomic density of an harmonically trapped ideal gas near Bose-Einstein transition temperature

    Full text link
    We have studied the atomic density of a cloud confined in an isotropic harmonic trap at the vicinity of the Bose-Einstein transition temperature. We show that, for a non-interacting gas and near this temperature, the ground-state density has the same order of magnitude as the excited states density at the centre of the trap. This holds in a range of temperatures where the ground-state population is negligible compared to the total atom number. We compare the exact calculations, available in a harmonic trap, to semi-classical approximations. We show that these latter should include the ground-state contribution to be accurate.

    An atomic Hong-Ou-Mandel experiment

    Full text link
    The celebrated Hong, Ou and Mandel (HOM) effect is one of the simplest illustrations of two-particle interference, and is unique to the quantum realm. In the original experiment, two photons arriving simultaneously in the input channels of a beam-splitter were observed to always emerge together in one of the output channels. Here, we report on the realisation of a closely analogous experiment with atoms instead of photons. This opens the prospect of testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, with an eye on theories of the quantum-to-classical transition. Our work also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing and quantum simulation

    Création et caractérisation d'une source ajustable de paires d'atomes corrélés

    Get PDF
    Ce mémoire de thèse décrit la création expérimentale et la caractérisation d'une source de paires d'atomes corrélés. Cette source ajustable repose sur l'utilisation du mélange à quatre ondes dans un réseau optique. Les paires ainsi créées sont similaires aux paires de photons produites par conversion paramétrique et ouvrent la porte à la réalisation d'expériences élaborées d'optique atomique quantique. En plaçant un condensat de Bose-Einstein dans un réseau en mouvement, les conditions d'accord de phase sont vérifiées et des atomes jumeaux sont alors produits spontanément. Grâce à un détecteur d'atomes uniques résolu à trois dimensions nous avons pu caractériser la source de paires obtenue. Nous avons ainsi étudié en profondeur les conditions d'accord de phase, prouvant que les atomes sont diffusés de manière préférentielle dans deux fines classes de vitesses qui conservent l'impulsion et l'énergie. En modifiant la vitesse et la durée du réseau par rapport aux atomes, il est possible de choisir les modes de sorties et leurs populations ce qui rend ce processus ajustable. De plus, nous avons pu mettre en évidence l'importance des interactions et en particulier des effets de champ moyen qui viennent modifier la conservation de l'énergie. La détection d'atome unique permet également d'étudier les propriétés statistiques des atomes jumeaux, nous avons ainsi pu mettre en évidence de fortes corrélations entres les atomes issus d'une même paire. Nous avons également observé une réduction sous le bruit de grenaille du bruit sur la différence du nombre d'atomes dans les modes corrélés. Cette réduction est une indication forte du caractère non classique des paires produitesThis thesis describes the experimental realization and characterization of a source of pairs of correlated atoms. This tunable source is based upon four waves mixing in an optical lattice. The created atomic pairs are similar to photon pairs made by parametric down conversion and open the way toward more elaborate quantum atom optic experiments. By placing a Bose-Einstein condensate in a moving optical lattice the phase matching conditions are fulfilled and twins atoms are spontaneously produced. Thanks to a single atom detector with three-dimensional resolution, we were able to characterize our source of pairs. By studying the phase matching conditions, we proved that the atoms are preferentially produced in two narrow velocity classes conserving both momentum and energy. By modifying the duration and the velocity of the lattice with respect to the atoms, one can tune the output modes and their populations providing a fully tunable process. Moreover, we have demonstrated the important effect of interactions -especially of mean field effects- that modifies the energy conservation. The single atom detection provided also a convenient way to look at statistical properties of the twins atoms: we have demonstrated strong correlation between atoms from the same pair and also we have observed a reduction below the shot noise of the noise on the number of atoms in correlated modes. Such a reduction is a strong indication of the non-classical nature of the produced atomic pairs.PARIS11-Inst. Optique (914712302) / SudocSudocFranceF

    Tunable source of correlated atom beams

    Full text link
    We use a one-dimensional optical lattice to modify the dispersion relation of atomic matter waves. Four-wave mixing in this situation produces atom pairs in two well defined beams. We show that these beams present a narrow momentum correlation, that their momenta are precisely tunable, and that this pair source can be operated both in the regime of low mode occupancy and of high mode occupancy

    Création et caractérisation d'une source ajustable de paires d'atomes corrélés

    Get PDF
    Ce mémoire de thèse décrit la création expérimentale et la caractérisation d'une source de paires d'atomes corrélés. Cette source ajustable repose sur l'utilisation du mélange à quatre ondes dans un réseau optique. Les paires ainsi créées sont similaires aux paires de photons produites par conversion paramétrique et ouvrent la porte à la réalisation d'expériences élaborées d'optique atomique quantique. En plaçant un condensat de Bose-Einstein dans un réseau en mouvement, les conditions d'accord de phase sont vérifiées et des atomes jumeaux sont alors produits spontanément. Grâce à un détecteur d'atomes uniques résolu à trois dimensions nous avons pu caractériser la source de paires obtenue. Nous avons ainsi étudié en profondeur les conditions d'accord de phase, prouvant que les atomes sont diffusés de manière préférentielle dans deux fines classes de vitesses qui conservent l'impulsion et l'énergie. En modifiant la vitesse et la durée du réseau par rapport aux atomes, il est possible de choisir les modes de sorties et leurs populations ce qui rend ce processus ajustable. De plus, nous avons pu mettre en évidence l'importance des interactions et en particulier des effets de champ moyen qui viennent modifier la conservation de l'énergie. La détection d'atome unique permet également d'étudier les propriétés statistiques des atomes jumeaux, nous avons ainsi pu mettre en évidence de fortes corrélations entres les atomes issus d'une même paire. Nous avons également observé une réduction sous le bruit de grenaille du bruit sur la différence du nombre d'atomes dans les modes corrélés. Cette réduction est une indication forte du caractère non classique des paires produitesThis thesis describes the experimental realization and characterization of a source of pairs of correlated atoms. This tunable source is based upon four waves mixing in an optical lattice. The created atomic pairs are similar to photon pairs made by parametric down conversion and open the way toward more elaborate quantum atom optic experiments. By placing a Bose-Einstein condensate in a moving optical lattice the phase matching conditions are fulfilled and twins atoms are spontaneously produced. Thanks to a single atom detector with three-dimensional resolution, we were able to characterize our source of pairs. By studying the phase matching conditions, we proved that the atoms are preferentially produced in two narrow velocity classes conserving both momentum and energy. By modifying the duration and the velocity of the lattice with respect to the atoms, one can tune the output modes and their populations providing a fully tunable process. Moreover, we have demonstrated the important effect of interactions -especially of mean field effects- that modifies the energy conservation. The single atom detection provided also a convenient way to look at statistical properties of the twins atoms: we have demonstrated strong correlation between atoms from the same pair and also we have observed a reduction below the shot noise of the noise on the number of atoms in correlated modes. Such a reduction is a strong indication of the non-classical nature of the produced atomic pairs.PARIS11-Inst. Optique (914712302) / SudocSudocFranceF

    An acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate

    Full text link
    We have realized an acoustic analog to the Dynamical Casimir effect. The density of a trapped Bose-Einstein condensate is modulated by changing the trap stiffness. We observe the creation of correlated excitations with equal and opposite momenta, and show that for a well defined modulation frequency, the frequency of the excitations is half that of the trap modulation frequency.Comment: Includes supplemental informatio

    Anisotropy in s-wave Bose-Einstein condensate collisions and its relationship to superradiance

    Get PDF
    We report the experimental realization of a single-species atomic four-wave mixing process with BEC collisions for which the angular distribution of scattered atom pairs is not isotropic, despite the collisions being in the ss-wave regime. Theoretical analysis indicates that this anomalous behavior can be explained by the anisotropic nature of the gain in the medium. There are two competing anisotropic processes: classical trajectory deflections due to the mean-field potential, and Bose enhanced scattering which bears similarity to super-radiance. We analyse the relative importance of these processes in the dynamical buildup of the anisotropic density distribution of scattered atoms, and compare to optically pumped super-radiance.Comment: 13 pages, 10 figures, added a fuller discussion of timescales, otherwise some minor changes in the text and the formatting of Figures 5-
    corecore